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Abstract
Zn1−x Mgx S, Zn1−x MgxSe and Zn1−x MgxTe ternary wide-gap semiconductor
alloys were investigated using the full potential–linearized augmented plane
wave (FP-LAPW) method. We have studied the effect of composition on
structural properties such as lattice constants, bulk modulus and bond ionicity.
The bandgap and the microscopic origins of compositional disorder have also
been explained in detail. In addition, from the obtained band structures, the
electron (hole) conduction and valence effective masses are deduced. These
parameters were found to depend non-linearly on alloy composition x , except
the lattice parameter for Zn1−x Mgx S, which follows Vegard’s law. The
calculated band structures for all three alloys show a direct bandgap in the
whole range of x composition. We have paid special attention to the disorder
parameter (gap bowing). Using the approach of Zunger and co-workers, we
have concluded that the total bandgap energy bowing was mainly caused by the
charge exchange effect for the alloys of interest.

1. Introduction

II–VI semiconductors have been of growing interest because of their wide bandgap character
and the potential applications for optoelectronic devices. Their bandgap energy falls between
1 and 3 eV, making them useful for application in optoelectronic devices in the visible region
of the spectrum [1]. These materials have also been exploited both for quantum confinement
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and for achieving waveguides. Promising candidates are Zn1−x MgxSe [2], Zn1−x Mgx S [3]
and Zn1−x Mgx Te [4], since their energy gaps and lattice constants can be varied in a wide
range by adjusting the content of stoichiometry parameter x . Blue–violet electroluminescence
obtained from Zn1−x MgxSe bulk crystals has shown that this material could be also used
for short-wavelength light-emitting devices [4]. A blue–green laser based on Mg-containing
II–VI semiconductors operated continuously at room temperature with a lifetime exceeding
100 h has already been demonstrated [5, 6]. Several Schottky barrier photodetectors using
Zn1−x Mgx S as the active layer were fabricated; they could be used as the active material for
detection of UV radiation shorter than 300 nm [7, 8]. The optical properties of Zn1−x Mgx Se
and Zn1−x MgxTe alloys have also been investigated experimentally [9].

The theoretical studies have been made for Zn1−x Mgx Se by many researchers, using the
empirical [10–13] and ab initio [14–16] pseudopotential methods. To the best of our knowledge
there are no theoretical reports in the literature on the structural and electronic properties of
Zn1−x Mgx S and Zn1−x Mgx Te alloys.

To obtain commercial optoelectronic devices with a long lifetime by using Zn1−x Mgx S,
Zn1−x Mgx Se and Zn1−x Mgx Te ternary alloys or by related quaternary layers, we need to have
a deeper understanding of the structural and electronic properties of these materials. Hence
the knowledge of bulk-crystal structural properties yields useful information for engineering
of the optoelectronic semiconductor devices. Therefore, the main aim of the present study
was to investigate the electronic and structural properties of Zn1−x Mgx S, Zn1−x MgxSe and
Zn1−x Mgx Te ternary alloys in cubic phase over a wide range of compositions 0 � x � 1
by using the full potential–linearized augmented plane wave (FP-LAPW) method. Various
quantities, including lattice parameters, bulk modulus, bandgap, optical bowing, bond ionicity
character and effective masses, were obtained for these alloys.

The organization of this paper is as follows: we describe the FP-LAPW computational
details in section 2. In section 3, results and discussion for structural and electronic properties
are presented. Finally conclusion is given in section 4.

2. Method of calculations

Describing random alloys by periodic structures will clearly introduce spurious correlations
beyond a certain distance (‘periodicity errors’). Preventing this problem needs a very
large supercell (e.g. >103 atoms for a binary alloy), for which first-principle self-consistent
calculations are still impractical. However, many physical properties of solids are characterized
by microscopic length scales and local randomness of alloys and modifying the large scale
randomness of alloys does not affect them. Recently, Zunger et al [17] implemented this fact
to construct the ‘special quasirandom structures’ (SQS) approach by the principle of close
reproduction of the perfectly random network for the first few shells around a given site,
deferring periodicity errors to more distant neighbours. They argued that this approach, which
we have adopted in our calculation, effectively reduces the size of the supercell for studying
many properties of random alloys.

The calculations were performed by the full potential–linearized augmented plane wave
(FP-LAPW) method to solve the Kohn–Sham equations as implemented in the WIEN2K
code [18]. The exchange–correlation contribution was described within the generalized
gradient approximation (GGA) proposed by Perdew et al [19] to calculate the total energy,
while for electronic properties in addition to that the Engel–Vosko (EVGGA) formalism [20]
was also applied. In the FP-LAPW method the wavefunction, charge density and potential
are expanded differently in two regions of the unit cell. Inside the non-overlapping spheres
of radius RMT around each atom spherical harmonic expansion is used, and in the remaining
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space of the unit cell the plane wave basis set is chosen. RMT values for Zn, Mg, S, Se and
Te were chosen to be 2.2, 2, 2, 2.25 and 2.4 au, respectively. The maximal l value for the
wavefunction expansion inside the atomic spheres was confined to lmax = 10. The plane
wave cut-off of Kmax = 8.0/RMT was chosen for the expansion of the wavefunctions in the
interstitial region for all the alloys and the binary compounds MgS, MgSe and MgTe, while
for the binary compounds ZnS, ZnSe and ZnTe we have used a Kmax = 9.0/RMT. The charge
density was Fourier expanded up to Gmax = 14 (Ryd)1/2. A mesh of 35 special k-points for
binary compounds and 27 special k-points for the alloy were taken in the irreducible wedge
of the Brillouin zone. Both the plane wave cut-off and the number of k-points were varied to
ensure total energy convergence.

3. Results and discussion

3.1. Structural properties

We first calculated the structural properties of the binary compounds ZnS, ZnSe, ZnTe, MgS,
MgSe and MgTe in the zinc-blende structure. Then the alloys were modelled at some selected
compositions x = 0.25, 0.5 and 0.75 following the SQS approach. For the composition
x = 0.25 and 0.75 the simplest structure is an eight-atom simple cubic lattice (luzonite):
the cations with the lower concentration form a regular simple cubic lattice. For x = 0.5, the
smallest ordered structure is a four-atom tetragonal cell,corresponding to the (001) superlattice.
We have also checked the chalcopyrite structure, which has a 16-atom tetragonal cell for
x = 0.5, and the results were found to be similar to those of the (001) superlattice.

The total energy of the primitive unit cell was calculated as a function of its volume, and
then by fitting the results with the Murnaghan equation of state [21] the equilibrium structural
properties such as the lattice constant and the bulk modulus were obtained both for the binary
compounds and their alloys. Our results for the materials of interest are compared with the
available experimental and theoretical predictions in table 1.

Usually, in the treatment of alloys, it is assumed that the atoms are located at the ideal
lattice sites and the lattice constant varies linearly with composition x according to the so-called
Vegard’s law [22].

a(AxB1−x C) = xaAC + (1 − x)aBC (1)

where aAC and aBC are the equilibrium lattice constants of the binary compounds AC and BC
respectively. a(AxB1−x C) is the alloy lattice constant.

However, violation of Vegard’s law has been reported in semiconductor alloys both
experimentally [29, 30] and theoretically [31–33].

Hence, the lattice constant of alloy can be written as

a(AxB1−x C) = xaAC + (1 − x)aBC − x(1 − x)b. (2)

The quadratic term b stands for the bowing parameter.
As a prototype the results obtained for the composition dependence of the calculated

equilibrium lattice parameter for Zn1−x MgxSe alloy are shown in figure 1. A small deviation
from Vegard’s law is clearly visible for this alloy with upward bowing parameter equal to
−0.03 Å which is very close to the experimental one (−0.07 Å) [29]. The lattice parameter
bowing for Zn1−x MgxTe alloy has also been found to be very small (−0.02 Å), while in the
case of Zn1−x Mgx S alloy our calculations exhibit an excellent agreement to Vegard’s law with
a lattice bowing close to zero.

The overall behaviours of the variation of bulk modulus as a function of the composition
x for all three alloys are very similar, hence only the curve of Zn1−x Mgx S alloy is presented
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Figure 1. Composition dependence of the calculated lattice constant (solid squares) of
Zn1−x Mgx Se alloy compared with Vegard’s law (dashed line).

Table 1. Calculated lattice parameter (a) and bulk modulus (B) for Zn1−x Mgx S, Zn1−x Mgx Se
and Zn1−x Mgx Te alloys, and their binary compounds. Available experimental and theoretical data
from the literature are also shown for comparison.

Lattice constants a (Å) Bulk modulus B (GPa)

x Our work Exp. Other calculations Our work Exp. Other calculations

Zn1−x Mgx S 1 5.703 5.62 [2] 5.584 [25] a 55.46 57.5 [25]a

5.635 [3]b

0.75 5.644 57.66
0.50 5.583 61.12
0.25 5.520 65.14
0 5.465 5.409 [26] 5.427 [3]b 69.62 76.9 [24] 77.4 [25]a

Zn1−x Mgx Se 1 6.002 5.91 [29] 5.873 [25]a 44.48 47.0 [25]a

5.89 [23] 5.86 [3]b

0.75 5.938 47.99
0.50 5.877 49.18
0.25 5.815 52.96
0 5.738 5.668 [43] 5.635 [3]b 58.20 62.5 [24] 63.9 [25]a

Zn1−x Mgx Te 1 6.517 6.35 [44] 6.282 [3]b 33.70
6.42 [4]

0.75 6.442 35.09
0.50 6.363 37.4
0.25 6.284 40.79
0 6.198 6.089 [43] 6.074 [3]b 44.35 50.5 [27] 47.7 [28]c

a Ab initio pseudopotential within LDA.
b Modified dielectric theory.
c Local basis set of Gaussian-type functions.

in figure 2. A significant deviation from the linear concentration dependence (LCD) with
downward bowing equal to 5.83, 6.93 and 6.19 GPa for Zn1−x Mgx S, Zn1−x Mgx Se and
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Figure 2. Composition dependence of the calculated bulk modulus (solid squares) of Zn1−x Mgx S
alloy compared with LCD prediction (dashed line).

Zn1−x Mgx Te alloys, respectively, was observed. This deviation is mainly due to the mismatch
of the bulk moduli of binary compounds. It is clearly seen that the bulk modulus decreases
by increasing the chalcogenide atomic number. Hence, we conclude that ZnTe and MgTe
are more compressible compared to the other zinc and magnesium chalcogenide compounds,
respectively.

It is well known that the ionicity factor is correlated to the total valence charge density;
therefore our calculations of the ionicity parameter have been carried out on the basis of the
empirical model described in [34]. In figure 3, we display the ionicity of the bonds at different
concentrations. It is relevant to note that for all three alloys the ionicity increases, while the
bulk modulus decreases on going from x = 0 to 1, which is due to the increasing of magnesium
concentration.

3.2. Electronic properties

The calculated band structure energies of binary compounds as well as for their alloys using
both GGA and EVGGA indicate a direct bandgap located at the � point in the whole range of
concentrations. The results are presented in table 2. It is clearly seen that the bandgap values
given by EVGGA are in good agreement with the experiments. In fact, it is well known that
GGA usually underestimates the energy gap [35, 36]. This is mainly due to the fact that the
functionals within this approximation have simple forms that are not sufficiently flexible to
accurately reproduce both exchange correlation energy and its charge derivative. Engel and
Vosko by considering this shortcoming constructed a new functional form of GGA, which is
able to better reproduce exchange potential at the expense of less agreement in exchange energy.
This approach, which is called EVGGA, yields a better band splitting and some other properties
which mainly depend on the accuracy of exchange correlation potential. On the other hand,
in this method, the quantities which depend on an accurate description of exchange energy Ex

such as equilibrium volumes and bulk modulus are in poor agreement with experiment. The
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Figure 3. The ionicity of the bonds at different concentrations for (a) Zn1−x Mgx S, (b) Zn1−x Mgx Se
and (c) Zn1−x Mgx Te alloys.

calculated bandgap E�
� for Zn1−x Mgx S, Zn1−x Mgx Se and Zn1−x Mgx Te were found to vary in

the range of 2.79–4.38, 1.89–3.58 and 1.57–3.15 eV respectively.
While the lattice constant of a semiconducting alloy may follow the Vegard’s rule closely,

the bandgap is often found to deviate considerably from the linear average

Eg = x EAC + (1 − x)EBC. (3)

Hence it is usually expressed by

Eg = x EAC + (1 − x)EBC − x(1 − x)bE (4)

where bE is the gap bowing
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Table 2. Bandgap energies of Zn1−x Mgx S, Zn1−x Mgx Se and Zn1−x Mgx Te alloys at different
Mg concentrations (all values are in eV).

Eg (eV)

Our work

x GGA EVGGA Experiment Other work

Zn1−x Mgx S 1 3.327 4.385 4.45 [3] 4.48 [13] 3.42 [25]
0.75 2.817 3.715
0.50 2.509 3.377
0.25 2.263 3.114
0 1.953 2.792 3.68 [3] 2.37 [25]

Zn1−x Mgx Se 1 2.517 3.584 3.6 [37] 4.0 [29] 3.67 [13] 4.21 [11]
0.75 2.027 2.857
0.50 1.710 2.512 3.32 [11]
0.25 1.427 2.060
0 1.129 1.889 2.68 [26] 2.5 [15] 2.7 [11]

Zn1−x Mgx Te 1 2.293 3.156 3.13 [1] 3.67 [9] 3.01 [3]
0.75 1.687 2.270
0.50 1.456 2.039
0.25 1.253 1.827
0 1.012 1.575 2.28 [1] 2.39 [9] 2.10 [3]

Figure 4 shows the composition dependence of the calculated bandgaps using GGA and
EVGGA schemes. We remark that the bandgap E�

� increases non-linearly with increasing of the
Mg content providing a positive gap bowing. A similar behaviour of E�

� for Zn1−x Mgx Se alloy
has been observed experimentally by Jobs et al [29] and also theoretically using the empirical
pseudopotential method [11]. Our results for the gap bowing, obtained by quadratic fits, are
presented and compared with the other available experimental and theoretical predictions in
table 3. The results shown in figure 4 obey the following variations:

Zn1−x Mgx S ⇒
{

EGGA
g (x) = 1.98 + 0.79x + 0.53x2,

EEVGGA
g (x) = 2.83 + 0.63x + 0.88x2

(5)

Zn1−x Mgx Se ⇒
{

EGGA
g (x) = 1.15 + 0.87x + 0.47x2,

EEVGGA
g (x) = 1.92 + 0.63x + 0.98x2

(6)

Zn1−x Mgx Te ⇒
{

EGGA
g (x) = 1.05 + 0.33x + 0.86x2,

EEVGGA
g (x) = 1.64 − 0.03x + 1.46x2.

(7)

It has been seen that the main influence of the bandgap energy is due to the lattice constant
and the electronegativity mismatch of the parent atoms [12, 29, 42].

In order to obtain the origins of bowing parameter, we adopted the approach of Zunger
and co-workers [17], which decomposes it into three contributions:

b = bVD + bCE + bSR (8)

bVD is the volume deformation contribution, which is due to the change of lattice constants of
the binary compounds to the alloy value. The chemical electronegativity contribution (bCE)
arises from the charge exchange in the alloy. bSR is the structural contribution due to the
relaxation of the anion–cation bond lengths in the alloy.
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Table 3. Decomposition of optical bowing into volume deformation (VD), charge exchange (CE)
and structural relaxation (SR) contributions compared with that obtained by a quadratic interpolation
and other predictions.

Present work
Present work Quadratic equation

GGA EVGGA GGA EVGGA Experiment Other work

Zn1−x Mgx S bVD −0.099 −0.657
bCE 0.502 1.509
bSR 0.123 −0.007
b 0.526 0.845 0.528 0.880

Zn1−x Mgx Se bVD −0.065 −0.106 2.070 [14]
bCE 0.466 1.724 −1.459 [14]
bSR 0.048 −0.689 −1.177 [14]
b 0.449 0.929 0.470 0.980 0.40 [29] 0.560 [14]

0.47 [38] 1.711 [10]
Zn1−x Mgx Te bVD −0.060 −0.118

bCE 0.809 1.403
bSR 0.037 0.021
b 0.786 1.306 0.860 1.460 0.69 [39]

0.67 [9]

Table 4. Electron (m∗
e ), light hole (m∗

lh) and heavy hole (m∗
hh) effective masses (in units of free

electron mass m0) at the � point of the Brillouin zone of the ternary alloys under investigation
compared with the available experimental and theoretical predictions.

(m∗
e)� (m∗

hh)� (m∗
lh)�

Present work Present work Present work

x GGA EVG Exp. Other work GGA EVG Other work GGA EVG

Zn1−x Mgx S 1 0.267 0.323 0.25 [13] 2.643 2.904 0.287 0.362
0.75 0.261 0.340 1.774 1.978 0.277 0.357
0.50 0.247 0.321 1.523 1.717 0.269 0.348
0.25 0.215 0.278 1.197 1.31 0.216 0.275
0 0.185 0.245 0.341 [41] 0.21 [13] 1.174 1.283 0.167 0.215

Zn1−x Mgx Se 1 0.202 0.261 0.24 [11] 2.154 2.386 0.85 [11] 0.215 0.287
0.23 [13]

0.75 0.191 0.260 1.478 1.629 0.199 0.266
0.50 0.173 0.236 0.27 [11] 0.999 1.110 1.47 [11] 0.181 0.243
0.25 0.144 0.198 1.042 1.135 0.143 0.193
0 0.114 0.163 0.147 [40] 0.23 [11] 1.020 1.108 1.44 [11] 0.105 0.145

0.17 [13]

Zn1−x Mgx Te 1 0.181 0.236 1.571 1.728 0.178 0.231
0.75 0.188 0.261 1.115 1.231 0.165 0.214
0.50 0.164 0.229 0.960 1.066 0.147 0.189
0.25 0.129 0.176 0.812 0.887 0.118 0.152
0 0.099 0.139 0.797 0.869 0.086 0.113

All terms presented in equation (8) were computed using GGA and EVGGA; for more
computational details, we refer the reader to references [32, 33]. The calculated bowing
parameters of the direct bandgap are presented in table 3. We note that the quadratic parameters
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Figure 4. Direct bandgap energy E�
� as a function of Mg composition using GGA (solid squares)

and EVGGA (solid circles) for (a) Zn1−x Mgx S, (b) Zn1−x Mgx Se and (c) Zn1−x Mgx Te alloys.

(gap bowing) calculated using GGA are in good agreement with experiment and very close
to those of Zunger’s approach. We conclude that the main contribution to the gap bowing is
raised from the charge exchange effect. This can be clearly attributed to the large ionicity
mismatch of the binary compounds.

It is also interesting to discuss at the end of the band structure study the effective masses of
electrons and holes, which are important for the excitonic compounds. We have calculated the
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Figure 5. Electron effective mass (in units of free electron mass m0) at the � point as a function
of Mg composition using GGA (solid squares) and EVGGA (solid circles) for (a) Zn1−x Mgx S,
(b) Zn1−x Mgx Se and (c) Zn1−x Mgx Te alloys.

effective masses of electrons and holes using both GGA and EVGGA schemes. A theoretical
effective mass in general turns out to be a tensor with nine components. However, for a
very idealized simple case where E(k) is a parabola at k = 0 (high symmetry point �) the
effective mass becomes a scalar. Our results concerning the electrons are displayed in figure 5.
Accordingly, the electron effective masses at the � point increase non-linearly with increasing
Mg concentration.
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Table 4 lists our calculated electron and hole (heavy and light) effective masses at the
� point of the Brillouin zone for Zn1−x MgxS, Zn1−x MgxSe and Zn1−x Mgx Te at various
compositions. It is clearly seen that GGA values are smaller than the corresponding values
within EVGGA. Our results calculated by the latter are in good agreement with the available
experiment and also theoretical predictions.

4. Conclusions

Employing the FP-LAPW method, we have studied the composition dependence of the
structural and electronic properties of Zn1−x Mgx S, Zn1−x Mgx Se and Zn1−x MgxTe ternary
alloys. We have optimized the lattice parameter for binary compounds as well as for alloys
to find the ground state properties. For Zn1−x Mgx S alloy the lattice constant closely follows
Vegard’s law, while for Zn1−x Mgx Se and Zn1−x Mgx Te a small deviation from Vegard’s law
with lattice bowing equal to −0.03 and −0.02 Å, respectively, has been observed. A significant
deviation of the bulk modulus from LCD was found for all three alloys. This deviation is mainly
due to the mismatch of the bulk modulus of binary compounds. The bulk modulus for the
alloys of interest decreases on increasing the Mg concentration, which is due to the increase in
the ionicity of bonds. Particular attention has been paid to the gap bowing, that exhibits non-
linear behaviour versus the concentration. This latter is calculated using a simple interpolation
scheme and also by following the approach of Zunger. The main contribution to the total
bowing parameter rises from the charge transfer between anion and cation. In addition, we
have computed the effective masses of the electron (hole),which increases with the composition
x . Finally, our results could be useful for the design of blue and green–ultra-violet wavelength
optoelectronic devices.
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